The Impact of Events Scale-Revised as a measure of posttraumatic stress disorder in acute lung injury survivors

O. Joseph Bienvenu, MD, PhD*
Jason Williams, MD*
Andrew Yang, BS*
Ramona O. Hopkins, PhD**
Dale M. Needham, MD, PhD*

*Johns Hopkins University School of Medicine
**Brigham Young University

We declare that we have no conflicts of interest to disclose.
Case Example

Last year I was hospitalized for two weeks, one in an ICU with life-threatening pneumonia (with sepsis/?ALI). It was the most terrorizing, frightening experience I could possibly imagine. I was convinced I had been abducted, raped and placed in some sort of diabolical experimental testing facility. Even after being moved out of ICU I remained in constant fear and quite delusional at times. I had a head CT because of what the nurse labeled as "strange" behavior. After two weeks I returned home, scared of things I couldn't even name. My husband took excellent care of me but had difficulty understanding what I was trying to convey about my experience, and no one at the hospital seemed able to explain what had happened. Last month I started to have horrible flashbacks about the ICU episode. The article helped me to understand what happened and what may still be happening to me as a result of my (critical illness and) week in the ICU. It is a great relief to know that I am not alone, and not at fault…
Critical illnesses and requisite ICU treatments are stressful

- respiratory insufficiency (shortness of breath)
- pain with endotracheal intubation and suctioning
- systemic inflammation, with BBB breakdown in sepsis
- activation of the hypothalamic-pituitary-adrenal axis
 - decreased adrenocortical responsiveness due to inflammatory mediators
- exogenous catecholamine administration to maintain adequate blood pressure
- delirium caused by illness, medications (e.g., sedatives), immobility, lack of normal sleep
 - hallucinations and delusions

- loss of ability to communicate normally
- loss of autonomy
Point prevalence…

• …using questionnaires with cut-offs for “clinically significant” PTSD symptoms: 21-35% (median 28%) over the first five years post-ALI
 – little evidence for fewer symptoms if assessed later post-ALI

• …using psychiatrist diagnoses of PTSD: 44% at hospital discharge, 25% at 5 years, and 24% at 8 years

In-ICU “risk factors”

– longer duration of sedation associated with more PTSD symptoms

– memories of adverse ICU experiences (“nightmares,” anxiety, pain, and respiratory distress) were associated with PTSD symptoms

– delirium?
Point prevalence...

- ...using questionnaires with cut-offs for “clinically significant” PTSD symptoms: 8-57% (median 22%) over the first year post-ICU.
 - In 4 studies that assessed the same patients longitudinally over 6 months to a year, there was no evidence of decreases in symptoms over time.

- ...using clinician diagnoses of PTSD: 10-40% (median 19%)

Pre-ICU risk factor

- pre-ICU anxiety and/or depressive illness

in-ICU “risk factors”

- agitation and physical restraint
- amount of bzd & opioid sedation

post-ICU “risk factor”

- memories of frightening experiences in the ICU
 - (paranoid delusions, hallucinations, nightmare-like experiences)

in-ICU protective factor

- systemic corticosteroid administration
 - stress doses in septic shock patients
Questions to address and their clinical relevance

- To what extent is in-ICU amount/duration of benzodiazepine/opioid sedation a marker of pre-ICU risk for post-ICU PTSD symptoms, vs. a cause?
 - if benzodiazepine sedation is truly causally related to, post-ICU PTSD symptoms, then lower doses or use of non-GABA-ergic sedatives may truly be preventative

- What other preventive interventions and treatments may be useful?
 - ICU diaries, in-ICU social support, and in-ICU cognitive-behavioral therapy (CBT) appear beneficial
 - Early post-ICU cognitive behavioral therapy (e.g., exposure)?
 - “Antidepressants” (e.g., SSRIs) if PTSD symptoms persist?

- Does administration of corticosteroids prevent post-ICU PTSD?
 - could affect the risk/benefit analysis clinicians make when deciding whether or not to administer these medicines

- Is administration of catecholamines causally related to PTSD?
 - relevant to the neurobiology of PTSD generally

- Are there valid questionnaire measures of PTSD besides the PTSS-10 and PTSS-14?
 - neither provides broad coverage of PTSD criteria
Background: Though questionnaires are frequently employed in intensive care unit (ICU) follow-up studies to measure posttraumatic stress disorder (PTSD) symptoms, most have not been validated against a clinical interview standard in this population. In the current study, we evaluated the Impact of Events Scale-Revised (IES-R) as a measure of PTSD symptoms in ICU survivors.
Methods: Patients were consecutively recruited from 2 prospective cohort studies evaluating acute lung injury (ALI) survivor outcomes. At 12- to 60-month follow-up post-ALI, 60 patients completed the IES-R, and, within one week, were interviewed using a semistructured diagnostic interview, the Clinician-Administered PTSD Scale (CAPS). The IES-R is a reliable 22-item self-report questionnaire developed to examine the psychological impact of a specific trauma (in this case, critical illness and intensive care treatment). The CAPS is the current "gold" standard in PTSD clinical research; it allows for a quantitative assessment of PTSD symptoms, as well as a qualitative diagnosis (present/absent).
Figure 1. Frequency of individual Clinician-Administered PTSD Scale symptoms in the last week and since the intensive care unit (n=60).
Figure 2. Convergence of two measures of posttraumatic stress disorder (PTSD) symptoms in the last week: the Impact of Events Scale-Revised (IES-R) total score versus Clinician-Administered PTSD Scale (CAPS) total severity score. Pearson’s $r=0.80$ ($p<0.0005$); Spearman’s rho=0.69 ($p<0.0005$).
Figure 3. Convergence of two measures of posttraumatic stress disorder (PTSD) in the last week: Receiver Operating Characteristic (ROC) Curve for the Impact Events Scale-Revised total score (test variable) versus the Clinician-Administered PTSD Scale PTSD (n=8/60 – criterion variable). The area under the curve (AUC) = 95% (95% confidence interval, 88-100%).
Results: Eight of the 60 patients (13%) had current CAPS PTSD, while an additional 8 patients had partial PTSD (total=27%). In a receiver operating characteristic curve analysis with last-week CAPS PTSD or partial PTSD as criterion variables, the area under the curve ranged from 95% (95% confidence interval, 88-100%) to 97% (95% CI, 92-100%). At an IES-R threshold of 1.6, with the same criterion variables, sensitivities ranged from 80-100%, specificities 85-91%, positive predictive values 50-75%, negative predictive values 93-100%, positive likelihood ratios 6.5-9.0, negative likelihood ratios 0.0-0.2, and efficiencies 87-90%.
Conclusion: The correlation between the IES-R total score and the CAPS total severity score was high, in the range expected for measures of the same mental health construct. The IES-R appears to be an excellent brief PTSD symptom measure and screening tool in ICU survivors.

Acknowledgements: NIMH, NHLBI

Dimitry Davydow, MD, MHS

Dale Needham, MD, PhD