“What about prevention?” – Training cognitive control to reduce stress reactivity and rumination

Kristof Hoorelbeke
Ernst H.W. Koster
Marie-Anne Vanderhasselt
Ineke Demeyer

ADAA 2015

Psychopathology and Affective Neuroscience Lab
Ghent University, Belgium
www.pan.ugent.be
Disclosures

- Financial support

 - Grant of the Special Research Fund (BOF) of Ghent University (B/13808/01)

 - We have nothing to disclose
Design

PRE-SCREENING
- RRS-NL-EXT

BASELINE
- Self-report
- Working memory

TRAINING
- Adaptive PASAT
- Adaptive Visual Search task (control group)

POST-TRAINING
- Self-report
- Working memory
- Stress reactivity & rumination in lab

FOLLOW-UP
- Response to naturalistic stress (self-report)

(Hoorelbeke, Koster, Vanderhasselt, Callewaert, & Demeyer, in press; BRaT)
PRE-SCREENING
• Undergraduate students
• “At-risk”

→ Heightened trait rumination (≥ pct. 70)
BASELINE

- BDI-II, MASQ-D30, RRS, PSWQ, RS, ACS, PANAS
- Automated Operation Span task (O-Span)
 - Complex span task
 - Letters
 - O-Span score
TRAINING

- randomized
- online
- 10 sessions within 14 days
- CCT or a non-working memory related training
- < 20 min.
POST-TRAINING

- Stress reactivity

- Stress induction procedure (Rossi & Pourtois, 2012)
 - visual oddball task
 - fictive norms of 42 students
 - feedback remains negative while block difficulty decreases
Breathing Focus task → VAS - Positive affect - Negative affect → Stress induction task → VAS - Positive affect - Negative affect → Breathing Focus task

Adaptive PASAT

Self-report
Working memory

Adaptive Visual Search task (control group)

Self-report
Working memory
Stress reactivity in lab

Response to naturalistic stress (self-report)

POST-TRAINING

RRS-NL-EXT

Self-report
Working memory
Follow-up:

- 4 weeks follow-up
- Online assessment
- Brooding
- Examination period
Hypotheses

(1) CCT \rightarrow stress reactivity in lab context
 - mood
 - ruminative thinking

(2) CCT \rightarrow brooding in response to a naturalistic stressor
Results
Participants

- $N = 53$, 47 completed the training, 37 responded to the follow-up call
- At risk undergraduate students

<table>
<thead>
<tr>
<th>Training condition</th>
<th>CCT</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>25 (FU: 20)</td>
<td>22 (FU: 17)</td>
</tr>
<tr>
<td>Age</td>
<td>20.80</td>
<td>20.50</td>
</tr>
<tr>
<td>Gender (F/M)</td>
<td>(25/0)</td>
<td>(18/4)</td>
</tr>
</tbody>
</table>

- Self-report measures: no pre-test group differences
- Both groups: increase in functioning on the training tasks over time
Results – Manipulation check: Working Memory Functioning?

2 (Between: Condition) x 2 (Time: Pre-Post) Mixed ANOVA

→ Main effect of Time: $F(1, 45) = 19.66, p < .001, \eta^2 = .30$

But no Time x Condition interaction: $F(1, 45) = 0.51, p = .48, \eta^2 = .01$

However, in CCT:

Δ WM functioning $\sim \Delta$ brooding

Δ resilience
Results – Hypothesis 1: CCT = stress reactivity (lab)

2 (Between: Condition) x 2 (Time: Pre-Post) Mixed ANOVA’s
Results – Hypothesis 2: CCT = \rightarrow brooding (naturalistic stressor)

2 (Between: Condition) x 2 (Time: Pre-Post) Mixed ANOVA covariate: time since previous exam

+ CCT: reduced stress reactivity in lab (T2) \rightarrow lower brooding following naturalistic stressor (T3)
Discussion

CCT can be used to ...

1. decrease stress reactivity in at risk students

2. decrease brooding in response to a naturalistic stressor

= decrease vulnerability for depressive symptomatology?

(Hoorelbeke, Koster et al., in press; BRaT)
Thank you for your attention!

For more information
kristof.hoorelbeke@ugent.be
www.pan.ugent.be

Promotor: Prof. dr. E.H.W. Koster